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Effect of disorder strength on optimal paths in complex networks
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We study the transition between the strong and weak disorder regimes in the scaling properties of the
average optimal paty, in a disordered Ers-Rényi(ER) random network and scale-fr¢gF) network. Each
link i is associated with a weight=exp(ar;), wherer; is a random number taken from a uniform distribution
between 0 and 1 and the parametarontrols the strength of the disorder. We find that for any fiajtéhere
is a crossover network si¢* (a) at which the transition occurs. For<N* (a) the scaling behavior oy is
in the strong disorder regime, witfy,~ N¥3 for ER networks and for SF networks with=4, and €y
~NA3/0-D) for SF networks with 3X\<4. For N>N*(a) the scaling behavior is in the weak disorder
regime, with€,~InN for ER networks and SF networks with>3. In order to study the transition we
propose a measure which indicates how close or far the disordered network is from the limit of strong disorder.
We propose a scaling ansatz for this measure and demonstrate its validity. We proceed to derive the scaling
relation betweeN* (a) anda. We find thatN* (a) ~ a3 for ER networks and for SF networks witt= 4, and
N* (a) ~a®V/*=3) for SF networks with X\ <4.
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. INTRODUCTION 7 = explar), (1)

The subject of complex networks has been widely ex-
lored in th few r in part to its br ran f : .

g;pﬁgatiotnse t%a?stoceial,yke)%lzggeexl, arr)% tctgrr;[ﬁwsn?(?;tio?] %3S?vv_herea is the parameter which controls the broadness of the
tems[1—6]. In a real world network, whether it be a commu- distribution of link costs. The parameter represents the
nication network or transport network, the timgtaken to ~ Stréngth of disorder. The limia—c is the strong disorder
traverse a linki may not be the same for all the links. In limit, since for this case only one link dominates the cost of
other words, there is a “cost” or a “weight’ associated with ~ the path. o _ . _
each link, and the larger the weight on a link, the harder it is There are distinct scaling relationships between the length
to traverse this link. In such a case, the network is said to bef the average optimal patfy,; and the network sizenum-
disordered. ber of nodey N depending on whether the network is

Consider two node#é\ and B on such a disordered net- strongly or weakly disordered.0]. For strong disordej10],
work. In general, there will be a large number of paths con-{o,~ N"rt, where v,,=1/3 for Erdis-Rényi(ER) random
nectingA andB. Among these paths, there is usually a singlenetworks [11] and for scale-freqSF) [1] networks with
path for which the sum of the cosisr along the path is >4, where\ is the exponent characterizing the power law
minimum and this path is called the “optimal path.” The decay of the degree distribution. For SF networks with
problem of optimal paths on networks is of importance sincez< )\ < 4, vopt=(A=3)/(\=1). For weakly disordered ER
the purpose of many real networks is to provide an efficienhetworks and for SF networks with> 3, €op~ N N. Porto
traffic route between its nodes. _ et al. [8] considered the optimal path transition from weak to

When most of the links on the path contribute to the sumgyqnq gisorder for two-dimensional and three-dimensional

the system is said to be “weakly disorderé®D). In SOme  15ices and found a crossover in the scaling properties of the
cases, however, the cost of a single link along the path dom|6 timal path that depends on the disorder streagths well
nates the sum. In this case, every path between two nod on the lattice sizk

can be characterized by a value equal to the maximum cos Lo . .
along that path, and the path with the minimal value of the Here we show that similar to regular lattices, there exists

- s
maximum cost is the optimal path between the two nodedor any finitea, a crossover network si2¢* (a) such that for

This limit of disorder is called thetrong disorderSD) limit ~ N<N* (@), the scaling properties of the optimal path are in

(“ultrametric” limit) [7] and we refer to the optimal path in the strong disorder regime while fof>N* (a), the network

this limit as themin-max path is in the weak disorder regime. We evaluate the function
The procedure to implement disorder on a network is asN* (a). The structure of the paper is as follows. In Sec. Il we

follows [7—10. One assigns to each lirikof the network a  derive a scaling approach for the transition from weak disor-

random number;, uniformly distributed between 0 and 1. der to strong disorder of the optimal path. In Sec. Il we

The cost associated with linkis then present simulation results which support the scaling ansatz.
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€
W(a) = F( P ) , (6)
where
const. u<l1
N <N*(a) N =N*(a) N > N*(a) Fw ~ In(u)/u u>1 0
Strong Disorder Weak Disorder !
with
FIG. 1. Schematic representation of the transition in the topol-
ogy of the optimal path with system si2¢ for a given disorder _ €.
strengtha. The solid line shows the optimal path at a finite value of u= (@) (8)

a connecting two nodes indicated by the filled circles. The portion

of the min-max path that is distinct from the optimal path is indi- The dependence df* (a) on a can be estimated as follows.
cated by the dashed lingg) For N<N* (a) [i.e., {..<¢*(a)], the  In the strong disorder limit, the cost on the links for any path
optimal path coincides with the min-max path, and we expect thegn the network typically differ by at least an order of mag-
statistics of the SD limit(b) For N=N*(a) [i.e., €.=¢*(a)], the  npjtude. This means that for a min-max path oflink (or
optimal path starts deviating from the min-max patt. For N |ength ¢), if we arrange the costs of the links in descending
>N*(a) [i.e., £..>€* (a)], the optimal path has almost no links in orqer, then two consecutive costs typically differ at least by
common with the min-max path, and we expect the statistics of th%n order of magnitude. if, andr, are the random numbers
WD limit. associated with two such consecutive links, withr,, then

the ratio of the costs on the links is
Finally, in Sec. IV we conclude with an analytic justification

for the scaling of the transition. n_ exp(aAr), (9)

Il. SCALING APPROACH 2

where Ar=r,-r,. Thus, in the case of strong disorder we
must haveaAr> 1. Consequently the transition to weak dis-
order occurs when all the links become equivalent in order of
S " magnitude, i.e., wheaAr ~ 1. The value ofAr depends on
which is related tN as'exz(fopt(oo) ~ Nt HenceN can be the length of the path. If the distribution of random numbers
expressed as a function 6t, on the min-max path is uniform, thekr ~1/¢ for a min-

N ~ ¢X/vopt, (2) max path of lengtif. The condition for the transitiorgAr

~ 1 is satisfied at the crossover lendth(a) which implies
Thus, for finitea, ¢y,(a) depends on botla and €... We  that

expect that there exists a crossover length(a), corre-

sponding to the crossover network siXé (a), such that(i) *(a) ~ a. (10

for €. <¢*(a), the scaling properties df,,(a) are those of  Therefore, from Eq(6), W(a) must be a function of../a.

the strong disorder regime, aiid) for £,,> €* (a), the scal-

ing properties off,,(a) are those of the weak disorder re- IIl. SIMULATION RESULTS

gime. In Fig. 1, we show a schematic representation of the

change of the optimal path as the network size increases. ~ Next we describe the details of our numerical simulations
In order to study the transition from strong to weak dis-and show that the results agree with our theoretical predic-

order, we introduce a measure which indicates how close dions. To construct an ER network of sidée with average

far the disordered network is from the limit of strong disor- hode degreek), we start with(k)N/2 edges and randomly

In general, the average optimal path lendth(a) in a
disordered network depends @nas well as onN. In the
following we use instead ol the min-max path lengti.,

der. A natural measure is the ratio pick a pair of nodes from the total possitld¢N—1)/2 pairs
¢ (a) to connect with each edgg. The only condition we impose is

Wa) = 2= (3)  that there cannot be multiple edges between two nodes.
€ In order to generate SF networks, we use the Molloy-

Reed algorithm12]. Each node is assigned a random integer

Using the scaling relationships betwegj(a) andN in both Kk taken from a power-law distribution

regimes, and’,,~ N"ort (see Sec.)| we get

k -\
N €., ~ Nt [SD] P(k):(—> , (11
Cor@ = 100 N [wD]. @ o

From Eqs.(3) and(4) it follows: wherekg is the minimal possible number of links that a node

possesses. Next, we randomly select a node and attempt to

const. [SD] connect each of it& links with randomly selecte& nodes
W(a) ~ (5)  that still have free positions for links. The disorder in the link
In€./€. [WD]. : . . - .
costs is then implemented using the procedure described in
We propose the following scaling ansatz fa): Ref. [9].
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® values ofa. (b) Plot of W(a)u=£€,p(a)/¢* (a)={op(a)/a vs Inu
=In[¢../€* (a)]=In(¢../a) for SF networks witt\=3.5. The values
of a represented by the symbols (a) and (b) are the same as in
Fig. 2.

FIG. 2. Test of Eqs(6) and(7). () W(a) plotted as a function of
{./a for different values ofa for ER networks with(k)=4. The
different symbols represent differeatvalues:a=8(0), a=16(0),

a=220), a=3AA), a=45(+), anda=64(x). (b) Same for SF net- =4 and for SF networks with =3.5. The excellent data col-

works with A=3.5. The symbols correspond to the same values Oiapse is consistent with the scaling relations &y. Figure 3

disorder as in@). The insets showV(a) plotted against lod../a), . -
and indicate forf,,<a, W(a) approaches a constant in agreementShOWS the scaled quantltléN(a)u—é’opt(a)/f* (@) VS, Inu
=In[{../€* (a)]=In({,/a), for both ER networks withk)

with Eq. (7).
a0 =4 and for SF networks with=3.5. The curves are linear at

For the ER networks generated we ykg=4 and for the  |arge u=¢../¢* (a), supporting the validity of the logarith-
SF networks we us&,=2. These parameter values ensuremic term in Eq.(7) for largeu.
that the networks generated are almost surely fully connected
[13].

To obtainf.,, we use the algorithm proposed by Ciep&k
al. [7], modified as described in Refl4]. With this modifi- We next develop analytic arguments that support(E@).
cation we reach system sizes df2°=65 536. In order to  These arguments will lead to a clearer picture about the na-
obtain the optimal path for a given realization, we use theure of the transition of the optimal path with disorder
Dijkstra algorithm[8]. We calculate the average optimal path strength.

{opd@) by taking the average of the optimal paths ovef 10  We begin by making a few observations about the min-
pairs of nodes. max path. In Fig. 4 we plot the average value of the random
In Fig. 2 we show the rati®\V(a) for different values ot numbers,, on the min-max path as a function of their ramk

plotted against../€* (a)=¢../a for ER networks with(k) (I=sn<¢,) for ER networks with(k)=4 and for SF net-

IV. DISCUSSION
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FIG. 4. Dependence on rank of the average values of the 0 . . . .
random numbers, along the most probable optimal path fay ER 2 4 6 8 10 12
random networks of two different sizeN=4096 (1) and N InN

=16384(O d(b) SF d tworks.
(©) and(b) random neworks FIG. 5. (a) The average number of linkg,,) with random num-

. _ . ) ber valuesr <p. on the min-max path plotted as a function of its
works with A=3.5. This can be done for a min-max path of length €., for an ER network with(k)=4, showing that¢,) grows

any length but in order to get good statistics we use the Mmosjearly with ¢... (b) The average number of linkg ) with random
prob?ble min-max path lengtfi5)]. VYe Ca,!l links witht number values > p; on the min-max path vs IN for an ER net-
=P "black” links, and links withr > p. “gray” links, follow-  \ork with (k}=4, showing that(¢;)~In N. The inset shows the

ing the terminology of loselevich and Lyubshih6] where  syccessive slopes, indicating that in the asymptotic licytg)
p. is the percolation threshold of the netwdd@]. ~1.55InN.

We make the following observations regarding the min-
max path.

(i) For r,<p, the values ofr,, decrease linearly with (OST) is a subset of links of a connected graph which pro-
rank n, implying that the values of for black links are vides an optimal path from nod& (which serves as the root
uniformly distributed between 0 arl, consistent with the  of the treg to any other node on the graph. When the total
results of Ref[17]. This is shown in Fig. 4. weight of this path is dominated by the largest weight of the

(i) The average number of black link&y), along the  |inks along the patigstrong disorder limit the OST does not
min-max path increases linearly with the average path lengtiepend on the root and is determined only by the structure of
€... This is shown in Fig. &). the original graph and a particular realization of the disorder.

(i) The average number of gray link€y) along the | this limit, the OST becomes identical to thenimal span-
min-max path increases logarithmically with the averagening tree(MST) [17,18. The path on the MST between any
path length?.,, or, equivalently, with the network si2¢. This  tyo nodesA andB, is the optimal path between the nodes in
is shown in Fig. ). the strong disorder limit—i.e, the min-max path.

The simulation results presented in Fig. 5 pertain to ER net- T0 construct the MST, we remove links in the descending
works; however, we have confirmed that the observatjbpns order of their costs;. If removal of a link destroys the con-
and (iii) also hold for SF networks. nectivity of the graph, we restore that link. This procedure is

Next we will discuss our observations using the conceptontinued until there are exactly—1 links remaining. At
of the optimal spanning tree. Theptimal spanning tree this point the number of remaining black links is
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after removing all links withr > p., the random number val-
uesr on the black links are uniformly distributed between 0
andp,, in agreement with observatiqn and Ref.[17].

Since there ar8l; clusters which include clusters of nodes
connected by black links as well as isolated nodes, the MST
can be described as an effective treeNgfnodes, each rep-
resenting a cluster, ard.— 1 gray links. We call this tree the
“gray tree” (see Fig. 6. This tree is in fact a scale-free tree
[19,2Q with degree exponenty=2.5 for ER networks and
for scale-free networks with =4, and\y=(2\-3)/(\-2)
for SF networks with 32\ <4. If we take two node# and
B on our original network, they will most likely lie on two
distinct effective nodes of the gray tree. The number of gray
links encountered on the min-max path connecting these two
nodes will therefore equal the number of links separating the

FIG. 6. Schematic representation of the structure of the minimaFﬁeCtlve. nodes on the gray tree. Henc?’ the average number
spanning tree, at the percolation threshold, v@lbeing the giant of gra){ “nks<€9,> encountered on the mln-r_naxl path between
component. Inside each cluster, the nodes are connected by bla@ arbitrary pair of nodes on the network is simply the aver-
links to form a tree. The dotted lines represent the gray links whictf9€ diameter of the gray tree. Our simulation redisk= Fig.
connect the finite clusters to form the gray tree. In this exampled(D)] indicate that
N.=4 and the number of gray links equals—1=3.

(€g) ~ InN. (16)
Ny = N(KYPe (12) Since (¢g) ~In ¢,,< (.., the average number of black links
2 (€,) on the min-max path scales ésin the limit of large¢.,,
in agreement with observatidii) as shown in Fig. &).
where(k) is the average degree of the original graph apd Now we will discuss the implications of our findings for

the crossover from strong to weak disorder. From observa-
tions (i) and (i), it follows that for the portion of the path
belonging to the giant component, the distribution of random
_ <k valuesr is uniform. Hence, we can approximate the sum of
Pe = K=K (13 weights by an integral

is given by[13]:

The black links give rise t®, disconnected clusters. One N ¢ Pe
of these is a spanning cluster, called tjiant component > expar,) = _bf expar dr
The N; clusters are linked together into a connected tree by k=1 Pc
exactlyN.—1 gray links(see Fig. §. Each of theN,, clusters 0

is itself a tree, since a random graph can be regarded as an _
infinite dimensional system, and at the percolation threshold = E[exp(apc) - 1]
in an infinite dimensional system the clusters can be regarded ¢
as trees. Thus thl clusters containingN, black links, to- = explar*), (17)

ether withN.—1 gray links form a spanning tree consistin .
gf Np+Ng—1 Clinksg y P g 9 \wherer* ~ pct(1/a)In((€p)/apy). Since(fy)={.,:

Thus the MST provides a min-max path between any two 1 (¢
points on the graph. Since the MST conneldtsiodes, the r* =p.+ —In<—°°>. (18)
number of links on this tree must be equalNe 1, so ap;
Thus restoring a short-cut link between two nodes on the
Np + N, = N. (14) optimal path with p,<r<r* may drastically reduce the

length of the optimal path. Wheap.> €., r* <p. and such
a link does not exist, but there starts to be a finite probability

From Egs.(12) and(14), it follows that for such a link to exist ift., > ap,. Hence, when the min-max
path is of length¢,.~ap., the optimal path starts deviating

(K)pe from the min-max path. The length of the min-max path at

N = N(l——). (15) which the deviation first occurs is precisely the crossover

length €* (a), and thereforef* (a) ~ap.. In the case of a
network with an arbitrary degree distribution we can write
Therefore N, is proportional toN. using Eq.(13), €* (a) ~ a(k)/(k?—k). Note that in the case of
The path between any two nodes on the MST consists 08F networks, as\ —3*, p. approaches zero and conse-
£, black links. Since the black links are the links that remainquently £* (a) — 0. This suggests that for any finite value of
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disorder strengtla, a SF network witth <3 is in the weak networks and for SF networks withk=4 and for SF net-
disorder regime. works with 3<\ <4.

In summary, for both ER random networks and SF net-
works we obtain a scaling function for the crossover from
weak disorder characteristics to strong disorder characteris-
tics. We show that the crossover occurs when the min-max The authors thank the Office of Naval Research, the Israel
path reaches a crossover lengtttf (a) and ¢*(a)~a. Science Foundation, and the Israeli Center for Complexity
Equivalently, the crossover occurs when the network Bize Science for financial support, and R. Cohen, E. Lopez, E.
reaches a crossover sip (a), whereN* (a) ~a® for ER  Perlsman, G. Paul, T. Tanizawa, and Z. Wu for discussions.
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